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Abstract 

 

It is well acknowledged that chaos is found in both the financial market and fluid flow. Some of 

their most important relationships as well as the rules controlling financial markets are covered 

in this literature review. An overview of the Black-Scholes model and the basic mechanism of 

the corresponding option pricing was given. Along with CAPM, two non-linear speculative 

autoregressive models, the ARMA and ARCH group, were also introduced. Current 

econometric models are developed using particle motions such as the Geometric Brownian 

Motion, and the Black-Scholes PDE is a slight variant of the heat equation. The stock market 

could be studied similarly to a fully developed turbulent flow by taking into account intermittency, 

which are high bursts of volatility clusters, and nonextensivity, which is the scaling effect seen 

in eddies. The inadequacy of conventional algorithms to incorporate stochastic fractals and 

inhomogeneity is regarded as the major obstacle in minimising prediction error. Examples of 

outstanding fluid mechanics approaches in modelling and forecasting financial evolutions from 

previous literature were highlighted and the economic analogue of Reynolds number and 

viscosity are considered to be alternative measures to dispersion and uncertainty. Unarguably, 

compared to the application of fluid theory to finance, more investments have been drawn to 

the development of pure statistical approaches over the past decade. Nevertheless, it should 

not be neglected that fluid characteristics could offer additional insights into problems that 

remain unsolved in traditional economic models. 

 

Keywords: Financial market; fluid mechanics; Black-Scholes; CAPM; autoregression; ARMA; 

ARCH; turbulence; intermittency; nonextensivity; stochastic fractals; Brownian motion 
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Statement of objectives 

 

The objectives of this literature review are defined as follows: 

 

• provide an overview of the laws of financial markets and the corresponding mathematical 

formulation.  

 

• establish whether a link with the laws of fluid mechanics is possible or not 

 

 

• discuss the chaotic nature of the financial markets and build a link with fluid turbulence. 
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1 Introduction 
 

It is widely recognised that the financial market does not behave in a predictable manner. 

Mathematicians have been attempting to study the chaotic behaviour of the financial market by 

deriving quantitative models. The earliest application of physics and mathematical models could 

be dated back to 1900 when Louis Bachelier’s PhD thesis provided a model to price options 

based on random walk and assumed that the price variations follow a normal distribution (1). In 

the 1960s, Edward Thorpe, a New Mexico State University mathematics professor, used 

probability theory from his research and created a statistical system to win Blackjack games  

(2). In the 1960s stochastic calculus was introduced to the study of finance by Paul Samuelson, 

whereas Merton implemented it to a continuous time process (Weiner Process) (3).  This led to 

the development of the Black-Scholes model, which allow us to compute the fair price for a 

European option and was awarded the 1997 Nobel Memorial Prize in Economic Sciences (4). 

 

However, the econometric models mentioned above heavily rely on assumptions and neglect 

some critical characteristics for price deviations, such as the presence of crashes, nonlinear 

serial dependence, etc. Numerical simulations have shown evidence that the stock market 

behaves differently than what is described in the existing models (5, 6). Econophysics is an 

interdisciplinary research field where theories in physics and fluids are applied to solve 

problems in economics. It was introduced in the mid-1990s due to the fact that physicists were 

not satisfied with the traditional explanations of the financial market, which had been proved to 

have inaccurate results empirically. Numerous studies have confirmed and exploited similarities 

between financial market behaviours and physical phenomena. For instance, the study of 

stochastic fractals from fluid turbulence was used to model intermittency in interest rates, the 

Kolmogorov Cascade was applied to the foreign exchange (FX) market to explain the 

heterogeneities between agents and their consequences on flow phenomenon at varying time 

scales, and the Black-Scholes equation was transformed into an analogue of the heat equation 

(7, 8). 

 

This paper is organised as follows. Section 2 introduces several fundamental governing 

equations in financial markets and relevant background information. Section 3 focuses on 

explaining how the relationships between the financial market and physics, more specifically 



2 
 

fluid mechanics, are developed. Sections 4 and 5 are the discussion and conclusion 

respectively.  

 

2 Current financial models  

  

2.1 Black-Scholes model 

 

2.1.1 Background 

 

The Black-Scholes Model could be considered the most important equation governing the 

market dynamics in the world of finance. The model is based on a parabolic partial differential 

equation, the Black-Scholes equation, where the Black-Scholes formula could be deduced and 

is able to give the theoretical estimate price of European-style options. This equation is named 

after economists Fischer Black and Myron Scholes, where the original idea from Robert C. 

Merton was further developed and sometimes credited (9, 10). The key idea behind the model 

is that options could be used and the risk in a portfolio could be hedged by buying and selling 

the underlying assets in a specific way. The method has led to the development of continuously 

revised delta hedging, which acts as a fundamental of other complex hedging strategies 

adopted by investment banks and hedge funds  (11). 

 

2.1.2 Options 

 

An option is a financial instrument that gives the right, but not the obligation, to buy or sell an 

asset, within a certain period of time and subject to certain conditions. Options are often called 

derivatives since their prices are derived based on the value of the underlying securities such 

as stocks (9). The majority of options in the market can be classified into the following: American 

Options and European Options. An American option can be exercised at any time up to the date 

of expiry, whereas a European option can only be exercised on the agreed expiry date. Any 

outstanding options must be exercised before the expiration date, it is sometimes called the 

maturity date. The striking price or the exercise price refers to the price that is paid when the 

option is exercised. The simplest kind of option is call options, which gives the option holder the 
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right to buy a single share of common stock (10). Whereas put options give the holder the right 

to sell a single share of common stock. For simplicity, we will be focusing on call options 

throughout this section. 

 

In general, if the price of the underlying stock is higher than the exercise price, the option would 

almost surely be exercised, and a profit could be taken as the difference between the stock 

price and the exercise price (9). On the other hand, if the stock price falls under the exercise 

price, the option can only be left until it expires without being exercised. Under normal 

circumstances, the relationship between a stock and 

its underlying option is shown in figure 1. The value 

of the stock option for successively shorter maturities 

is shown through the lines T1, T2, and T3. The value 

of the option could not be higher than the stock, 

hence the maximum price of the option is represented 

by line A, 45 degrees from the axis (9). The minimum 

price of the option is represented by line B, and it 

cannot be lower than zero and cannot be smaller than 

the stock price minus the exercise price. It can be 

concluded that options have a higher volatility than 

stocks. In other words, a percentage change in the 

stock price would result in a larger percentage change 

in the option (9). 

 

2.1.3 Evolution of option valuation 

 

There were numerous attempts before Black and Scholes to work on a valuation model for 

options and they have been expressed in terms of warrants, which refer to options that allow 

the holder to buy shares in equity rather than shares of common stock (9 ,12). However, 

arbitrary parameters are involved in these attempts and hence are incomplete. For instance, 

Sprenkle’s formula for option pricing can be expressed by the following (9): 

 

𝑘𝑥𝑁(𝑏1) − 𝑘∗𝑐𝑁(𝑏2) 
 

Eq.1 
 

Figure 1. The relation between option value and            

stock price (9) 
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𝑏1 =  
ln

𝑘𝑥
𝑐 +

1
2 𝑣2(𝑡∗ − 𝑡)

𝑣√(𝑡∗ − 𝑡)
     ,       𝑏2 =

ln
𝑘𝑥
𝑐 −

1
2 𝑣2(𝑡∗ − 𝑡)

𝑣√(𝑡∗ − 𝑡)
 

 

Eq.2 

Where 𝑥, 𝑐, 𝑡∗, 𝑡 and 𝑣2 represents the stock price, exercise price, maturity date, current date 

and the variance rate of the return on stock respectively. 𝑙𝑛 is the natural logarithm and 𝑁(𝑏) is 

the cumulative normal density function. Sprenkle attempted to estimate empirically the unknown 

parameters 𝑘 and 𝑘∗ but were unable to do so. Similar issue was faced by Samuel and Merton, 

where they were trying to deduce constants in order to estimate the discount rate of a warrant  

(12). Ultimately the Black-Scholes model was built upon the empirical valuation formula derived 

by Thorp and Kassouf (13). The detail derivation could be found in the Nobel Prize-winning 

paper The Pricing of Options and Corporate Liabilities (9). The final result of the Black-Scholes 

formula is shown below: 

                

         𝐶 = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑡𝑁(𝑑2)                                    Eq.3 

 

𝑑1 =  
𝑙𝑛

𝑆𝑡

𝑘
+ (𝑟 +

𝜎2

2
) 𝑡

𝜎√𝑡
     ,     𝑑2 = 𝑑1 − 𝜎√𝑡 

Eq.4 

 

Where 𝐶, 𝑁, 𝑆𝑡, 𝐾, 𝑟, 𝑡 and 𝜎 is the call option price, cumulative distribution function of the normal 

distribution, spot price, strike price, risk-free interest rate, time to maturity and the volatility of 

the underlying asset respectively.  

 

2.2 Speculative models 

 

2.2.1 Background 

 

In recent decades mathematicians, economists and investors have been competing to correctly 

determine the future value of company stock or other financial instruments in order to maximise 

return. Some speculative strategies include value investing, where investors would purchase 

an asset at a discount on its intrinsic value, time series models, which use historic data as a 

driving metric for financial forecasting, econometric models, which utilise complex data and 
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mathematics throughout the process and the list goes on (14). In fact, some of these forecasting 

models, such as the Capital Asset Pricing Model, serve as an alternative derivation for the 

Black-Scholes model mentioned in section 2.1 (9). The Capital Asset Pricing Model (CAPM), 

Autoregressive Conditional Heteroskedasticity (ARCH), and Autoregressive Moving Average 

(ARMA) models are introduced in this section to provide a better understanding for the context 

of this review as they are considered the common methods to validate or compare the 

relationship between fluid mechanics and the financial market.  

 

2.2.2 Capital Asset Pricing Model (CAPM) 

 

Building on Harry Markowitz's earlier research on diversification and modern portfolio theory, 

Jack Treynor, William F. Sharpe, John Lintner, and Jan Mossi each independently established 

the CAPM (15, 16). For their contribution to the field of financial economics, Sharpe, Markowitz, 

and Merton Miller shared the 1990 Nobel Memorial Prize in Economics. Another variation of the 

CAPM, known as Black CAPM or zero-beta CAPM, was created by Fischer Black in 1972 and 

does not rely on the existence of a riskless asset (9). This variation, which shows more 

consistency with empirical verification, contributed to the CAPM's wide adoption and could be 

expressed in the following form: 

 

𝐸(𝑅𝑖) =  𝑅𝑓 + 𝛽𝑖(𝐸(𝑅𝑚) − 𝑅𝑓) Eq.5 

 

Where 𝐸(𝑅𝑖) is the expected return on the capital asset, 𝑅𝑓 is the risk-free rate of interest, 𝛽𝑖 is 

the sensitivity of the expected excess asset returns to the expected excess market returns, and 

𝐸(𝑅𝑚)  is the expected return of the market (e.g., S&P 500). 𝐸(𝑅𝑚) − 𝑅𝑓  is the difference 

between the expected market rate of return (market premium). CAPM is derived under 

assumptions such as zero transaction costs and all assets being perfectly divisible and liquid 

(17). The result demonstrates that the cost of equity capital is solely determined by beta. 

Despite the CAPM's numerous failures in empirical testing, mainly caused by beta bias, and the 

existence of more recent methods for valuing assets and portfolio selection such as arbitrage 

pricing theory and Merton's portfolio problem, it is still widely used because of its ease of use 

and versatility (18). A visualisation of the result of CAPM could be reviewed in figure 2. The y-

axis shows the expected return, while the portfolio risk, is represented by their standard 
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deviations on the x-axis. The return of a riskless asset and risky assets are represented by their 

efficient frontiers, which are deduced by plotting returns of the underlying assets against their 

risks, can be seen as the line from 𝑅𝑓 to 𝑇 and the curve 𝑎𝑏𝑐 respectively. The line constructed 

from 𝑅𝑓  to 𝑔  shows an asset allocation 

with both riskless asset and risky assets 

(i.e. stocks and bonds).  

 

2.2.3 Autoregressive Moving Average (ARMA) 

models 

 

ARMA models are often used in statistical 

time series analysis and provide a concise 

description of stationary stochastic 

processes. Stochastic processes are 

frequently observed in the field of statistics and finance, which refers to the property of being 

well described by a random probability distribution (19) . The ARMA model consists of two 

polynomial terms, which are the autoregression (AR) and moving average (MA) terms 

respectively. The ARMA model serves as a technique for comprehending and forecasting future 

values in a time series of data. The AR component refers to the process of regressing the 

variable on its own lagged, or in other words, prior values. Whereas the MA component 

accounts for the error which is modelled as a linear combination of error terms deduce from 

previous averages calculated in a shifted time window (19, 20). Based on the Laurent series 

and Fourier analysis, the ARMA model was derived in Peter Whittle’s thesis in 1951 and was 

popularised by George E.P Box and Jenkins, who created an iterative (Box-Jenkins) method 

for selecting and estimating the model (21). This method was proved to be more accurate for 

low-order polynomials and could be expressed by the following notation: 

 

𝑋𝑡 = 𝜀𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑋𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖 

Eq.6 

 

Where ∑ 𝜑𝑖
𝑝
𝑖=1 𝑋𝑡−𝑖  and ∑ 𝜃𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖  represents the AR and MA terms respectively. The 

autoregressive coefficient is denoted by 𝜑𝑖, the moving average coefficient is expressed by 𝜃𝑖, 
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and 𝜀𝑡  is the error term. The order of ARMA models are often expressed in the form of 

ARMA(p,q) (20) . For instance, ARMA(1,2) is referring to an AR order of 1 and MA order of 2, 

which means the current autoregressive component is dependent on the previous value 

whereas the moving average component is dependent on the previous two values. The value 

of p and q could be simply adopted using relevant historical data or derived using methods that 

model the correlation between consecutive values using previous separations, including the 

autocorrelation function (ACF) or partial autocorrelation function (PACF) (20).  

 

Under most circumstances, a generalisation of the ARMA model, the autoregressive integrated 

moving average (ARIMA), is adopted in time series analysis such as forecasting (20, 22). The 

ARIMA model is especially useful when the underlying data show signs of non-stationarity (i.e., 

data that consists of trends or cyclical behaviours). The “integrated” element within the ARIMA 

model corresponds to a differencing step, which may be applied once or more times to remove 

non-stationarity (20). The purpose of this is to tackle the inconsistency in predicting non-

stationary time series, such as financial markets which exhibit strong seasonality, by turning it 

into a stationary process. The ARIMA model has a very similar form with the ARMA model and 

could be expressed by the following: 

 

𝑍𝑡 = 𝜀𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑍𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖 

Eq.7 

 

Notice that the 𝑋𝑡 term in ARMA model is now replaced with 𝑍𝑡, which is the difference between 

consecutive timepoints of the data series. The order of ARIMA models could be expressed as 

ARIMA(p,d,q), with d being the order of differencing, similar to what we have seen from finite 

difference methods (19). The application of these autoregressive models expands beyond the 

financial market, they are widely adopted in other time series analysis such as the forecasting 

of electricity load in a circuit or tourism demand of city  (23, 24). 

 

2.2.4 Autoregressive Conditional Heteroscedasticity (ARCH) models 

 

Conditional variances can be modelled and predicted using Autoregressive Conditional 

Heteroskedasticity (ARCH) models (25). Similar to the ARMA models, ARCH models can be 
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broken down into two components. “AR” stands for autoregression, and it was defined in section 

2.2.3. “H” refers to Heteroskedasticity, which refers to the study of deviations, and “C” 

represents Conditional, in which the probability distributions of volatility change depending on 

the present value (25, 26). When it comes to error terms, ARIMA models deal with serial 

correlation, whereas ARCH models deal with the fact that the variance of prediction errors is 

not constant but varies over time. 

 

The first few papers that looked at the statistical characteristics of stock returns were those by 

Mandelbrot and Fama (27). Engle worked on enhancing time-series analysis in the 1980s (25). 

Although volatile variables, like stock prices, can move dramatically over a period of time, most 

statistical approaches at the time viewed them as constants. Engle invented the statistical 

method known as ARCH, which leverages previously observed patterns of variance to forecast 

future volatility, after observing the variance of stock returns (25). The identification of 

Conditional Heteroskedasticity from Engle was recognised, and he was awarded a Nobel Prize 

in Economics in 2003. The prices and risks associated with investing in stocks are now 

calculated using improved ARCH models in banking and finance. 

 

To better understand homoscedastic and heteroscedastic processes, the following scenario is 

set: let there be a univariate stochastic process 𝑌 . If the standard deviations of 𝑌  remain 

constant for all periods 𝑡 , 𝑌  is said to be homoscedastic. It is considered heteroscedastic 

otherwise. If the unconditional standard deviations 𝑡  are not constant, the process is 

unconditionally heteroscedastic. If the conditional standard deviations 𝜎𝑡|𝑡−1 are not constant, 

the distribution is conditionally heteroscedastic  (25). The idea of heteroscedasticity could be 

illustrated using the following examples of stock market returns and the cost of electricity (26). 

Returns on bonds or stocks typically exhibit conditional heteroscedasticity. Although the 

volatilities of these prices are not consistent, periods of low or high volatility are typically 

unpredictable. On the other hand, the cost of 

electricity in New Delhi displays unconditional 

heteroscedasticity (26). Compared to other seasons, 

summer tends to have higher price volatility. Since 

this is predictable and the prices of electricity show 

unconditional heteroscedasticity. 
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In terms of the expression of ARCH, it is a simple deviation from the AR model, the only 

difference is that the predicted variance residual, 𝜀𝑡̂
2, is now computed using the following (28): 

 

𝜀𝑡̂
2 = 𝛼̂0 + ∑ 𝛼̂𝑖

𝑞

𝑖=1

𝜀𝑡̂−𝑖
2  

Eq.8 

 

In the field of statistics, the ̂  notation is often used to describe predictive values. 𝛼̂𝑖 is the 

residual coefficient and q could be derived from PACF and the order of ARCH lag is expressed 

in the form ARCH(q). There exist multiple improvements of ARCH models, such as the 

generalised ARCH (GARCH), Integrated GARCH (IGARCH), and Threshold GARCH 

(TGARCH) (26, 29). The most suitable models need to be determined on a case-by-case basis, 

for instance, the IGARCH and TGARCH were proven to yield the best performance in 

forecasting exchange rates (26). 

 

3 Fluids in finance 

 

3.1 Black-Scholes, conduction and diffusion 

 

It is now possible to assess the correlation between the Black-Scholes equation and the heat 

equation given what is known about both equations. Numerous similarities exist between the 

Black-Scholes equation and the well-known heat equation (30, 31, 32). This similarity is the 

reason why there is such a profound correspondence. By investigating the Black-Scholes 

equation as the heat equation and ultimately arriving at a solution, a perspective could be 

obtained. Let’s recall the Black-Scholes PDE and the heat equation (31) : 

 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0 

Eq.9 

 

𝜕𝐹

𝜕𝜏
=

1

2
𝜎2

𝜕2𝐹

𝜕𝑥2
 

Eq.10 
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Given 𝑆 as the value of the underlying asset, 𝑡 representing time, 𝑉 is the price of the option, 𝑟 

is the risk-free rate, the temperature 𝐹 and position 𝑥. For the context of this literature review, 

the diffusivity term is represented by 
1

2
𝜎2 instead of using the thermal conductivity, density and 

specific heat capacity of the material. 𝜏 is defined as difference between the terminal value of 

time, 𝑇 , and the present time value. Several popular methods exist for transforming one 

equation to the other, which includes applying assumptions using the finance rationales and 

executing dimensional analysis on the variables (31, 32). In this section we will include a brief 

introduction to the former as it gives a more relatable intuition with the heat equation. 

 

The transformation is based on an important step named time reversal (31). The purpose of 

this is to change the backward operator in the Black-Scholes equation into a forward operator, 

which could be defined through the signs within the equation. This is also consistent with the 

heat equation’s forward operating nature. By doing time reversal would yield the following 

substitutions (31): 

𝑥 = 𝑙𝑛𝑆̃𝜏 + (𝑟 −
1

2
𝜎2)𝜏 

 

Eq.11 

𝐹𝜏 =  𝑉̃𝜏𝑒𝑟𝜏 Eq.12 

 

And the boundary condition of option price: 

 

𝑉𝑇 = max (𝑆𝑇 − 𝐾, 0) Eq.13 

 

In this context, 𝜏 expresses the time until maturity such that the option expires when 𝜏 = 0. In 

this time reversed domain, 𝑆̃𝜏  and 𝑉̃𝜏 represents the current stock price and option price 

respectively (31). 𝑆𝑇 denotes the stock price at maturity using the known solution of Geometric 

Brownian motion and Eq. 13 is derived using the nature of option contracts as explained in 

section 2.1.1 (9, 33). The above substitutions, boundary and terminal conditions are the key 

steps in converting between the Black-Scholes equation and heat equation. For simplicity, the 

remaining algebraic manipulation is not written in detail in this review.  

 

A previous literature by Leonard Mushunje analysed the stock market using the heat equation 

in a different way. He suggested that mathematicians tend to focus on the volatility of stock 
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prices, whereas the diffusivity factor has always been neglected. By considering stock prices 

as martingales and as Markovian, a model for expected stock prices was derived (34). The drift 

and volatility components of stock price and heat diffusion are compared, and a decent 

explanation of the diffusivity of stock prices could be found (34). In another paper Semi-closed 

form solutions for barrier and American options written on a time-dependent Ornstein 

Uhlenbeck (OU) process, the form of heat equation is utilised to derive a pricing model for 

barrier options, adapting the use of heat potentials that was adapted by A. Lipton in the 20th 

century (35, 36). The OU process is a widely used stochastic process in financial mathematics 

and physics and its original application includes modelling for the velocity of a massive 

Brownian particle under the influence of friction (37). Typical uses of such PDE with moving 

boundaries could be found in nuclear power engineering combustion, solid-propellant rocket 

engines, phase transitions, crystal growth etc. (35).  

 

3.2 Multifractals, intermittency, and turbulence 
 

It is widely acknowledged that the financial market series shows non-linearity (38), and recent 

studies have shown that this non-linear fluctuation in foreign exchange markets exhibits fractal 

features (39). This statistically translates to non-integer dimensionality, in other words, 

intermittency or inhomogeneity in a time series. The term fractal was previously mostly used to 

refer to deterministic chaos, which is created by a small number of generating equations (40). 

However, a new class of stochastic fractals was discovered beginning in the 1980s, mostly as 

a result of physics research on turbulence. In high-dimensional systems, there exist processes 

known as multifractals (40, 41). The idea of stochastic fractality is directly applicable in 

econometrics, despite the fact that the mechanisms that produce multifractals in physics may 

not always correspond to economic processes (40). Multifractals in physics possess a very 

strong scaling symmetry, whereas fractals found in financial markets demonstrate weak scaling 

symmetries and evolve toward a non-fractal state over time (41). They hold much shorter 

intervals and are called stochastic fractals. 

 

In The fractal structure of exchange rates: measurement and forecasting, Gordon et al. 

suggested that fractal properties could be found in the determinants of exchange or interest 

rates and differential in real rates of return (8). Based on state transitions, a forecasting 

algorithm is derived and backtested against various time series models, including those 
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introduced in section 2.2. It is useful here to understand the fundamental parameters of fractals 

𝐻, 𝛼, and 𝐶, which corresponds to nonstationary, the probability distribution, and the degree of 

intermittency (42). 𝐻 typically ranges from 0 to 1, where the underlying non-linear series is 

considered as long-term memory series when its value is smaller than 0.5, and antipersistent 

or turbulent processes otherwise. 𝛼 ranges from 0 to 2, with 𝛼 = 2 and 𝛼 = 1 representing a 

lognormal and Cauchy distributions respectively. In simple words, a smaller 𝛼 would lead to a 

smoother process (8, 27). 𝐶  represents codimension, the series is considered to be 

homogenous when 𝐶 = 0 and inhomogeneous or fractal otherwise. These three parameters 

could be computed for non-linear series to analyse its fractality through a scaling procedure, 

which is by all means taking rations of stochastic processes (27, 41, 43): 

 

𝜇(|𝑙𝑛 𝑌𝑡 − ln 𝑌𝑡−1|𝑞) ≈ 𝜇(|𝑙𝑛 𝑌𝑡 − ln 𝑌𝑡−𝑇|𝑞)[(
𝑡

𝑇
)

𝜁(𝑞)

] 
Eq.14 

 

Where 𝑞 is a series of exponents, 𝑌𝑡 is the time series itself, 𝜇 represents the mean and 𝑇 is the 

terminal value of time. The exponent 𝜁 arises as a product of scaling and is a function of 𝑞 and 

has the following form (8): 

 

𝜁(𝑞) = 𝑞𝐻 − {[
𝐶

𝛼−1
] (𝑞𝛼 − 𝑞)} for 𝛼 ≠ 1 

 

Eq.15 

𝑞𝐻 − [𝐶𝑞𝑙𝑛𝑞] for 𝛼 = 1  

 

The degree of curvature for the slope of 𝜁(𝑞) is a function of probability distribution and 

inhomogeneity, and hence the measure of the turbulence of the process (8). Using the above 

operations, the ARIMA, GARCH and state-transition ARCH (ST-ARCH) showed fractality in 70% 

of the simulation tests. 7500 data points of interest rates and exchange rates series were also 

tested and they all behave strongly as fractals, with values of 𝐶 topping 0.145. These scaling 

symmetries multifractal processes could be exploited, and the following forecasting model is 

derived (8): 

 

𝑙𝑛𝑌𝑡 = 𝑎0 + 𝑎1𝑙𝑛𝑌𝑡−1 + 𝑎2𝜗2𝑡−1 + 𝑎3𝑆𝐸𝑡𝑙𝑛𝑌𝑡−1 + 𝑎4𝑆𝐸𝑡𝜗2𝑡−1  Eq.16 
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Where 𝑆𝐸𝑡  denotes state variable representing extreme fluctuations, 𝑎𝑖  is the regression 

coefficient and 𝜗𝑖 is the proportionality coefficients obtained by dividing the log difference of 

previous data points in the time series. This state transition approach was backtested against 

other econometric models on the FX market. The models are estimated using the first 500 data 

points and forecasting methods are applied for the remainder (8). It is striking to observe that 

the state transition model tires or have an advantage over the AR(1) or GARCH models two-

third of the time. 

 

The intermittency, volatility clusters such as energy bursts and volatile movements in finance, 

and nonextensivity, the anomalous scaling of properties like entropy, are discussed using a 

slightly different approach in the paper Intermittency and Nonextensivity in Turbulence and 

Financial Markets and suggested that a single parameter 𝑞 from nonextensive thermostatistics 

could relate all the above properties (44,  45). Recall the study of turbulent flows is characterised 

by the statistics of velocity differences 𝑣𝑟(𝑥) = 𝑣(𝑥) − 𝑣(𝑥 + 𝑟) at different scales 𝑟. The scaling 

invariance become trivial when examining the cascade process of kinetic energy dissipation 

through smaller and smaller hierarchy of eddies in to heat, while the energy cascade is 

governed by the underlying PDF of 𝑣𝑟.The PDFs are normally distributed under large scales 

(~𝐿), but exhibit strong non-Gaussian and fatter wings than expected for values far from integral 

scale, which is a strong sign for intermittency phenomenon. This so called PDM problem 

attracted several attempts (39, 45), and we will review the simplest and most accurate solution 

proposed by Tsallis, who gave a generalization of Boltzmann-Gibbs thermostatistics based on 

the scaling properties of multifractals (44): 

 

𝑝𝑞(𝑥) = [1 − 𝛽(1 − 𝑞)𝑥2]1/(1−𝑞)/𝑍𝑞 Eq.17 

 

Where the normalisation factor for 1 < 𝑞 < 3 could be expressed by: 

 

𝑍𝑞 ≡ [
𝛽(𝑞 − 1)

𝜋
]

1
2 Γ (

1
q − 1)

Γ(
3 − q

2(q − 1)
)
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This model is checked with the turbulence statistic data (45), and the results agree with all 

spatial scales and normalised velocity differences in all orders. The same approach could be 

adopted directly to the financial market, where we focus on differences on prices instead of 

velocities. The model provides matching behaviour with the statistics of price differences over 

all temporal scales, see figure 5 below. However, its integral value of 2.2 days is not consistent 

with other estimates produced using similar approach in other studies (39). 

 

 

 
 
Figure 4a. Data points: standardized 

probability distribution pq(vr) of velocity 

differences vr(x) = v(x) − v(x + r) for spatial 

scales r = 0.0073L, 0.0407L, 0.3036L, 

0.7150L, with L/η = 454 and L and η being, 

respectively, the integral and Kolmogorov 

scales; data taken from (38), provided by 

Chabaud et al.13; Solid lines: least-

squares fits of modified PDF (1); from top 

to bottom: q = 1.26, 1.20, 1.11, 1.08; 𝛽− = 

0.69, 0.66, 0.55, 0.62; 𝛽+  = 0.88, 0.82, 

0.76, 0.70 (for better visibility the curves 

have been vertically shifted with respect to 

each other) (44). 

 

 
 
Figure 4b.  Data points: standardized 

probability distribution pq(zτ) of price 

differences zτ = z(t) − z(t + τ ) for temporal 

scales τ = 0.0035τL, 0.0276τL, 0.2210τL, 

0.8838τL, with τL = 186265 s being the 

integral scale; data taken from (38), 

provided by Olsen & Associates; Solid 

lines: least-squares fits of modified PDF 

(1); from top to bottom: q = 1.35, 1.26, 

1.16, 1.11; 𝛽− = 1.12, 0.83, 0.75, 0.75; 𝛽+ 

= 0.98, 0.72, 0.61, 0.77.(for better visibility 

the curves have been vertically shifted with 

respect to each other) (44). 
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3.3 Financial agents and soft matter 
 

Apart from the fluid turbulence perspective as discussed in the previous section, one can also 

relate the financial market with fluid mechanics by viewing the stock market as a physical 

system analogous to a fluid that is evolving in a macroscopic space, and subject to a force that 

affects its movement over time arises from the collision of the supply and demand of financial 

agents. In the field of fluid mechanics, these forces are typically analysed using physical 

properties such as density, viscosity and surface tension (46, 47). 

In a recent literature Stock market’s physical properties description based on Stokes’ law by 

Geoffrey Ducournau (47), the dynamics of the stock market behaviour is explained qualitatively 

and quantitatively from the supply and demand collision, which results from the physical 

characteristics of financial agents as outlined by the Stokes Law. As opposed to analysing the 

fractality of time series from last section, whether the “flow” of the stock market is laminar, 

turbulence, or transitionary could be determined by reconstructing the econophysics analogue 

of the Reynold number and viscosity (13). To derive these values, the stock market system 

could be categorised into two elements, which are stock market obstacles and stock market 

fluids, while both consist of financial agents with varying properties. Financial agent could be 

defined as a particle which have 

three coordinates Side, Price, and 

Size (47). Whereas stock market 

obstacles are defined as pending 

orders with a predetermined buying 

or selling price such as a Limit Order 

or Stop Order. The stock market fluid 

itself is modelled as a particle with 

changing properties with respect to 

time, which is equivalent to Market 

Order, that takes the current market price as the price of the particle (47). The interaction 

between the fluid and obstacle lead to the flow in stock market, whereas these interactions 

could be distinguished into two types: Active Interaction takes place when the order-book’s 

Bid/Ask price collides with fluids particles that are designated as market order, and Passive 

Interaction take place when the fluid price is defined as limit or stop order where there is no 
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collision between the order-book’s Bid/Ask (47). This scenario is illustrated using an economic 

analogue of a free body diagram in figure 5. We can also utilise Stokes' Law to find an economic 

equivalent of the viscous parameter if we are aware of the stock market's economic physical 

characteristics and those of every new agent (47). Given that there are no equivalent 

terms for radius and gravity in economics, those terms could be omitted to simplify the process 

and the expression for the economic analogue of dynamic viscosity is given below: 

 

μfluid =
Sobstacle ∗ Pobstacle − Sorder ∗ Porder

V ∗ 𝜐
 

Eq.18 

 

Where 𝑆, 𝑃, 𝑉 and υ correspond to the size, price, volume of transaction and velocity of the 

agent. If the” buying force” is dominant, Sobstacle = 𝑆𝑎𝑠𝑘 and Pobstacle = 𝑃𝑎𝑠𝑘. If the “selling force 

is dominant, then Sobstacle = 𝑆𝑏𝑖𝑑  and Pobstacle = 𝑃𝑏𝑖𝑑 . And the economic analogue of the 

Reynolds Number  (48, 49): 

𝑁𝑅 =

𝑆𝑓𝑙𝑢𝑖𝑑 ∗ 𝑃𝑓𝑙𝑢𝑖𝑑

𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 ∗ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
. 𝜐2. 𝑙

1 −
𝑆𝑓𝑙𝑢𝑖𝑑 ∗ 𝑃𝑓𝑙𝑢𝑖𝑑

𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 ∗ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

  

Eq.19 

 

Whereas ℙ =
𝑆𝑓𝑙𝑢𝑖𝑑∗𝑃𝑓𝑙𝑢𝑖𝑑

𝑆𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒∗𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
 denotes the conditional probability of having a perfect collision, 𝑙 

represents the characteristic length, which is equivalent to the necessary travel length to make 

the stock market price change (48, 49). To validate this model two simulations were executed 

and the results linking the Reynolds Number, market speed variation (change in prices for every 

time 𝑡) and  ℙ could be observed in the 3D surface plot in figure 6. The Reynolds number 

function of market speed and collision probability is shown in Figure 6a. Two local maxima can 

be evaluated when the likelihood of a collision and the absolute value of market speed are both 

maximum. The Reynolds number function of market spread and collision probability are shown 

in Figure 6b. One local maximum can be evaluated when the dispersion widens, and the 

likelihood of a collision is at its highest. Consequently, through computer simulations, we can 

observe the same property as that provided by Eq.19, namely that the larger Reynolds number 
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value is a function of the market's speed, the likelihood that supply and demand will collide, and 

that the larger spread acts as a catalyst for this collision (47). 

 
 

Figure 6a. 3D Surface plot of Reynolds Numbers  

against market speed variation (change in prices  

for every time t) and the probability of having a  

collision ℙ𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (46). 

Figure 6b. 3D Surface plot of Reynolds Numbers 

against market Bid/Ask spread (𝑙 = |{𝑝0} − {𝑝1}| for 

every time 𝑡) and the probability of having a collision 

ℙ𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (46). 

 

Another literature worth highlighting is Stock markets: A view from soft matte written by Antonio 

M. in 2020 (50), in which the stock price and trading of big and stable companies was modelled 

using the physics of many-particle systems. Two sets of US and European stocks were used in 

the study with a pair distribution close to 1, which means there is no direct interaction between 

stocks, similar to an ideal gas of particles. A few parameters including mean-squared price 

displacement (MSPD); the price correlation function, equivalent to the intermediate scattering 

function (ISF); the price fluctuation distribution; and two parameters for collective motions were 

used to compare the behaviour of Brownian particles and the financial market (50, 51). Three 

sets of stocks, including US stocks, UK stocks and European (including UK) stocks were used. 

The structure and dynamics of the portfolios were measured, and logarithm of price is used for 

non-dimensionalisation such that stocks in different currencies could be compared. Log-price 

distributions and the pair distribution function are used to analyse the structure, whereas 

correlation functions such as the mean-squared log return (log-price difference), Van Hove 

functions, and observables are used for dynamics. In structural terms, the pair function 

distribution of stock 𝑔(𝜔) is very close to 1 (50). Proving that there is little to no correlation 

between stocks, which has the same structure as an ideal gas. For dynamics, data form the 

stock markets are fed into a generalized ISF, i.e., the Fourier transform of MSPD. The ISF of 



18 
 

different wave numbers are compared in figure 7 with decaying correlation function, as expected 

for a fluid state. However, the decay is more stretched than a simple exponential and is found 

to behave similar to the correlation function in undercooled liquids, governed by the 

Khoulrausch stretched exponential (52).  In addition, the absence of velocity correlations and 

linear growth of MSPD is comparable to the Brownian motion of independent particles.  Based 

on these similarities, Antonio et al. proposed two physical system that could explain the stock 

market qualitatively (50). The first one consists of a colloid with short-range attractions that, 

when the attraction strength is increased, produces reversible clusters that percolate in the 

presence of sufficient interactions. As a matter of fact, the MSD of this system increases linearly 

for strong attractions, where the bonds influence particle diffusion even over very short 

timescales but also exhibit a high degree of cooperative behaviour. However, in sharp contrast 

to stock markets, gels exhibit strong structural relationships. The second system that can be 

compared to stocks is an extension of the perfect gas; it is made up of rigid stars that are 

infinitely thin and lack structural correlations but can exhibit a sizable slowdown for high 

densities (50). 

 

 

Figure 7. Self part of the intermediate 

scattering function of the US stocks for 

different wave numbers, increasing from 

top to bottom as labeled. The thin lines 

show the simple exponential fitting of the 

initial decay, and the thick lines correspond 

to the fitting of the stretched exponential 

(49). 

In the paper An econophysics approach to analyse uncertainty in financial markets: an 

application to the Portuguese stock market, the stock market is analysed as a physical system 

in entropy perspective, which is widely used as a measure of dispersion, uncertainty and 

disorder in engineering physics (53). The variance has always played a crucial part in the 

understanding of risk and uncertainty. Entropy, on the other hand, can be an alternative 

measure of dispersion, and Soofi thinks that it is important to be cautious when using variance 

as a measure of uncertainty (54). Entropy is a gauge of how far away from the uniform 
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distribution the density 𝑝𝑋(𝑥) is. It assesses the "utility" of substituting 𝑝𝑋(𝑥) for the uniform 

distribution in order to estimate uncertainty (55). The variance represents the average deviation 

of the probability distribution's results from the mean. Both measures, according to  (56), 

indicate concentration, but their individual metrics of concentration differ. Contrary to the 

variance, which simply assesses concentration around the mean, entropy assesses diffuseness 

of the density regardless of where concentration occurs. Similar to the analysis performed by 

Leton and Gruber  (57), Andreia et al. rejected the null hypothesis that the rates of return of a 

diversified portfolio follows a normal distribution (53). High levels of kurtosis and skewness can 

be observed, which is consistent with what we have discussed in section 3.2. Eq.20 below yield 

the entropy of a normal distribution 𝑁𝐻(𝑋) and it used to compare entropy and traditional 

standard deviation in uncertainty analysis (53). Since entropy uses a lot more information about 

the probability distribution than variance, it can be concluded that it is more sensitive to 

diversification and is a more general uncertainty measure. 

 

𝑁𝐻(𝑋) =  ∫ 𝑝𝑋(𝑥)𝑙𝑜𝑔√2𝜋𝜎 𝑑𝑥 + ∫ 𝑝𝑋(𝑥)
(𝑥 − 𝑥̅)2

2𝜎2
𝑑𝑥 = log (√2𝜋𝑒𝜎)  

Eq.20 

4 Discussions  
 

Several connections between fluid mechanics and financial markets are shown in Section 3. 

This section will examine the benefits and drawbacks of using these formulations as well as 

prospective directions for further research. 

 

It is worth noting that the motivation to relate the financial market with fluid mechanics expands 

far beyond academic curiosity. In the world of finance, any investment that outperforms the 

broader market is considered a good investment. Whereas a group of top hedge funds 

generates an average annual return of 15.5% over the past five years (58). Alternative methods 

of modelling, including the governing law of fluid mechanics, are explored to improve returns 

and simplify computation processes. Moreover, it could be beneficial to obtain a deeper insight 

to the physical perspective of financial algorithms and make appropriate adjustments, given that 

some econometric models are derived from models such as Brownian motion. 
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Fractality and scaling are some of the key relationships between fluid turbulence and financial 

markets. To best model the volatile behaviour of the financial market with intermittent extreme 

events, Mandelbrot attacked the issue by taking ratios of stochastic process. From prior studies 

it is proven that the multiplicative interaction in time series results in fractality, which act as an 

obstacle for traditional forecasting model to give accurate results. The inability for econometric 

models such as ARCH and ARMA to capture fractality and intermittency of the financial market 

has been addressed in numerous literatures, and solutions derived from fluid turbulence are 

given. The state transition forecasting algorithm for exchange market proposed by Richards is 

an excellent example (8), which yield errors smaller than general econometric models in over 

60% of the simulations. However, AR1 and GARCH models have also produced decent results 

and it is understandable to wonder why they are able to forecast as well as they can given that 

exchange rates are fractals rather than random walks or ARCH processes. The Kalman filter's 

ability to at least partially capture state changes is one factor contributing to this. The fact that 

they parameterize some of the data's inhomogeneity could perhaps hold the key to the solution. 

The scaling of the ARCH functions utilised in the forecasting models reveals a non-zero 

codimension. Similar to this, the Kalman filter's time varying AR1 parameter also exhibits fractal 

behaviour. These models are non-fractal, but when fitted to the data, they do reflect some of 

the intermittency. Though this effect is beneficial, these statistical models are still less capable 

to model catastrophic changes in the financial market. The intermittent nature of the stock 

market also directly contradicts with the random-walk assumption when deriving the Black-

Scholes model, which is part of the reason why there are grounds for profit by manipulating 

mispriced assets.  

 

One important aspect of fluid mechanics implementation into finance is its computational 

simplicity and efficiency, but mixed performances could be seen in previous literatures. For 

instance, in (35) complexity arises when solving the linear Fredholm equation using some 

forward differences method with 𝑁 nodes in the space domain and 𝑀 nodes in the time domain.   

This led to an order of complexity of 𝑂(𝑀3) for a single value of space 𝑆 and 𝑂(2𝑘𝐿(𝑀 + 𝑁)) 

for all strikes and maturities, where 𝑘 is the number of iterations and 𝐿 is a constant from the 

numerical method used. Non-linear equations need to be solved for American options and the 

situation worsens. Other numerical methods such as Crank-Nicolson or backward differences 

could be adopted but there is a compromise between speed and accuracy.  
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It is intriguing to observe that the majority of literature regarding the link between fluid 

mechanics and financial market were published before the 2000s, perhaps due to increasing 

interest with pure statistical methods alongside advancements in artificial intelligence (AI) 

technologies. It is apparent that the approaches based on fluid mechanics are primarily 

connected to the financial statistics that apply more to trading than fundamental investing. 

Therefore, it is understandable that computationally intensive fluid mechanics approaches 

would be left undeveloped as it contradicts with the principal of minimising risks and exposure 

by executing trades in unit of milliseconds. The majority of earlier studies have explored the 

connection between fluid turbulence and the stock market, but they lack an assessment of how 

useful these connections are in practise. To gauge interest for further development, for example, 

their capacity to consistently ensure return and their adaptability to respond to macroeconomic 

events and make adjustments fall short. By all means, physics and fluid mechanics theories 

serve as a great toolkit for solving analytical problems with economic models. The economic 

counterpart of fluid characteristics may offer additional insights that conventional economic 

models do not take into account, even while it is insufficient to serve as the primary indicator for 

investment or trading decisions. 

 

5 Conclusions 

 

 

In this literature review, the laws of the financial market and the underlying mathematical 

formulations were introduced. Some insights into the Nobel Prize-winning Black-Scholes model 

and the basic mechanism of the corresponding option pricing were given. Along with some of 

the most accurate autoregressive speculative models, an overview of the most frequently used 

and straightforward forecasting model, CAPM, was provided.  

 

Links between the laws of fluid mechanics and financial markets could be demonstrated in three 

ways. Firstly, the theories of fluid motion played an important role in the development of 

stochastic processes in econometrics primarily by adopting Geometric Brownian Motion in 

mathematical models with the premise that asset values have constant volatilities.  However, 

this oversimplified assumption has been the fundamental impediment to more precise 

forecasting which is why the chaotic nature of the financial market have been attacked in a fluid 
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turbulence perspective, where both scenarios share traits of multifractality and intermittency. 

Various financial models and forecasting algorithms were derived in previous literatures using 

the characteristics of fluid behaviours. Most indicate decent theoretical possibilities but 

restricted implementations, with the top-performing model being the state-transition based FX 

algorithm which outperforms or makes even with conventional statical methods in two-third of 

the backtested data.  

 

Finally, a particle system viewpoint was covered, with a focus on particle collision and entropy. 

Entropy is a more comprehensive measure of uncertainty than variance because it makes use 

of a lot more information about the probability distribution, making it more sensitive to 

diversification. Economic analogue of Reynolds number and viscosity were also explained, 

where they serve as alternative measures to dispersion.  The discussion compared the merits 

and limitations on fluid mechanics applications to the financial market and highlighted possible 

reasons behind the slowdown of relevant studies.  
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